欢迎来到CL境外营销平台,平台经营Instagram、Facebook、YouTube、TIKTOK、Twitter粉丝、点赞、播放量服务、客服微信:coolfensi 24小时在线欢迎咨询购买!
公告:
欢迎来到CL境外营销平台,平台经营Instagram、Facebook、YouTube、TIKTOK、Twitter粉丝、点赞、播放量服务、客服微信:coolfensi 24小时在线欢迎咨询购买!

twitter境外推广--Twitter刷评论

首页 Twitter   作者:coolfensi  2022年10月06日  热度:60  评论:0     
时间:2022-10-6 11:07   热度:60° 

铜灵 丽翔 凹非寺

物理位 公司出品| 社会公众号 QbitAI

CycleGAN,两个能将两张影像的特点北迁到另两张影像的酷演算法,在此之前能顺利完成马变长颈鹿、冬天变冬天、苹果公司变皱果等两颗划艇的效用。

T5800被顶会ICCV收录于的自然科学研究自明确提出后,就为信号处理等应用领域的技工所制,即使还正式成为许多音乐家用以音乐创作的辅助工具。

也是现阶段火灾的换脸控制技术的前辈了。

假如你还没专业委员会此项吓人的自然科学研究,那此次很大要加紧下车了。

那时,TensorFlow已经开始亲自动手教你,在TensorFlow 2.0中CycleGAN同时实现神功。

那个非官方讲义贴两天内斩获了满满的曝光率,赢得了Google AI技师、哈佛大学统计数据自然科学自然科学研究院Josh Gordon的所推荐,twitter上仅约600赞。

有欧美国家网民赞扬太棒,则表示很开心看见TensorFlow 2.0讲义中囊括了最一流的数学模型。

这份讲义全面详细,想学CycleGAN不能错过那个:

详细内容

在TensorFlow 2.0中同时实现CycleGAN,只要7个步骤就能了。

1、设置输入Pipeline

安装tensorflow_examples包,用于导入生成器和鉴别器。

!pip install -q git+https://github.com/tensorflow/examples.git

!pip install -q tensorflow-gpu==2.0.0-beta1
import tensorflow as tf
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow_datasets as tfds
from tensorflow_examples.models.pix2pix import pix2pix
import os
import time
import matplotlib.pyplot as plt
from IPython.display import clear_output
tfds.disable_progress_bar()
AUTOTUNE = tf.data.experimental.AUTOTUNE

2、输入pipeline

在那个讲义中,我们主要学习马到长颈鹿的影像转换,假如想寻找类似的统计数据集,能前往:

https://www.tensorflow.org/datasets/datasetscycle_gan

在CycleGAN论文中也提到,将随机抖动( Jitter )和镜像应用到训练集中,这是避免过度拟合的影像增强控制技术。

和在Pix2Pix中的操作类似,在随机抖动中吗,影像大小被调整成286×286,然后随机裁剪为256×256。

在随机镜像中吗,影像随机水平翻转,即从左到右进行翻转。

dataset, metadata = tfds.load(cycle_gan/horse2zebra,
 with_info=True, as_supervised=True)
train_horses, train_zebras = dataset[trainA], dataset[trainB]
test_horses, test_zebras = dataset[testA], dataset[testB]
BUFFER_SIZE = 1000
BATCH_SIZE = 1
IMG_WIDTH = 256
IMG_HEIGHT = 256
def random_crop(image):
 cropped_image = tf.image.random_crop(
 image, size=[IMG_HEIGHT, IMG_WIDTH, 3])
 return cropped_image
normalizing the images to [-1, 1]
def normalize(image):
 image = tf.cast(image, tf.float32)
 image = (image / 127.5) - 1
 return image
def random_jitter(image):
  resizing to 286 x 286 x 3
 image = tf.image.resize(image, [286, 286],
 method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
  randomly cropping to 256 x 256 x 3
 image = random_crop(image)
  random mirroring
 image = tf.image.random_flip_left_right(image)
 return image
def preprocess_image_train(image, label):
 image = random_jitter(image)
 image = normalize(image)
 return image
def preprocess_image_test(image, label):
 image = normalize(image)
 return image
train_horses = train_horses.map(
 preprocess_image_train, num_parallel_calls=AUTOTUNE).cache().shuffle(
 BUFFER_SIZE).batch(1)
train_zebras = train_zebras.map(
 preprocess_image_train, num_parallel_calls=AUTOTUNE).cache().shuffle(
 BUFFER_SIZE).batch(1)
test_horses = test_horses.map(
 preprocess_image_test, num_parallel_calls=AUTOTUNE).cache().shuffle(
 BUFFER_SIZE).batch(1)
test_zebras = test_zebras.map(
 preprocess_image_test, num_parallel_calls=AUTOTUNE).cache().shuffle(
 BUFFER_SIZE).batch(1)
sample_horse = next(iter(train_horses))
sample_zebra = next(iter(train_zebras))
plt.subplot(121)
plt.title(Horse)
plt.imshow(sample_horse[0] * 0.5 + 0.5)
plt.subplot(122)
plt.title(Horse with random jitter)
plt.imshow(random_jitter(sample_horse[0]) * 0.5 + 0.5)
plt.subplot(121)
plt.title(Zebra)
plt.imshow(sample_zebra[0] * 0.5 + 0.5)
plt.subplot(122)
plt.title(Zebra with random jitter)
plt.imshow(random_jitter(sample_zebra[0]) * 0.5 + 0.5)

3、导入并重新使用Pix2Pix数学模型

通过安装tensorflow_examples包,从Pix2Pix中导入生成器和鉴别器。

那个讲义中使用的数学模型体系结构与Pix2Pix中很类似,但也有一些差异,比如Cyclegan使用的是实例规范化而不是批量规范化,比如Cyclegan论文使用的是修改后的resnet生成器等。

我们训练两个生成器(G和F)和两个鉴别器(X和Y)。生成器G架构影像X转换为影像Y,生成器F将影像Y转换为影像X。

鉴别器D_X区分影像X和生成的影像X(F(Y)),辨别器D_Y区分影像Y和生成的影像Y(G(X))。

OUTPUT_CHANNELS = 3
generator_g = pix2pix.unet_generator(OUTPUT_CHANNELS, norm_type=instancenorm)
generator_f = pix2pix.unet_generator(OUTPUT_CHANNELS, norm_type=instancenorm)
discriminator_x = pix2pix.discriminator(norm_type=instancenorm, target=False)
discriminator_y = pix2pix.discriminator(norm_type=instancenorm, target=False)
to_zebra = generator_g(sample_horse)
to_horse = generator_f(sample_zebra)
plt.figure(figsize=(8, 8))
contrast = 8
plt.subplot(221)
plt.title(Horse)
plt.imshow(sample_horse[0] * 0.5 + 0.5)
plt.subplot(222)
plt.title(To Zebra)
plt.imshow(to_zebra[0] * 0.5 * contrast + 0.5)
plt.subplot(223)
plt.title(Zebra)
plt.imshow(sample_zebra[0] * 0.5 + 0.5)
plt.subplot(224)
plt.title(To Horse)
plt.imshow(to_horse[0] * 0.5 * contrast + 0.5)
plt.show()
plt.figure(figsize=(8, 8))
plt.subplot(121)
plt.title(Is a real zebra?)
plt.imshow(discriminator_y(sample_zebra)[0, ..., -1], cmap=RdBu_r)
plt.subplot(122)
plt.title(Is a real horse?)
plt.imshow(discriminator_x(sample_horse)[0, ..., -1], cmap=RdBu_r)
plt.show()

4、损失函数

在CycleGAN中,因为没有用于训练的成对统计数据,因此无法保证输入X和目标Y在训练期间是否有意义。因此,为了强制学习正确的映射,CycleGAN中明确提出了循环一致性损失(cycle consistency loss)。

鉴别器和生成器的损失与Pix2Pix中的类似。

LAMBDA = 10
loss_obj = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real, generated):
 real_loss = loss_obj(tf.ones_like(real), real)
 generated_loss = loss_obj(tf.zeros_like(generated), generated)
 total_disc_loss = real_loss + generated_loss
 return total_disc_loss * 0.5
def generator_loss(generated):
 return loss_obj(tf.ones_like(generated), generated)

循环一致性意味着结果接近原始输入。

例如将两个句子和英语翻译成法语,再将其从法语翻译成英语后,结果与原始英文句子相同。

在循环一致性损失中,影像X通过生成器传递C产生的影像Y^,生成的影像Y^通过生成器传递F产生的影像X^,然后计算平均绝对误差X和X^。

前向循环一致性损失为:

反向循环一致性损失为:

def calc_cycle_loss(real_image, cycled_image):
 loss1 = tf.reduce_mean(tf.abs(real_image - cycled_image))
 return LAMBDA * loss1

初始化所有生成器和鉴别器的的优化:

generator_g_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
generator_f_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_x_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_y_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

5、检查点

checkpoint_path = "./checkpoints/train"
ckpt = tf.train.Checkpoint(generator_g=generator_g,
 generator_f=generator_f,
 discriminator_x=discriminator_x,
 discriminator_y=discriminator_y,
 generator_g_optimizer=generator_g_optimizer,
 generator_f_optimizer=generator_f_optimizer,
 discriminator_x_optimizer=discriminator_x_optimizer,
 discriminator_y_optimizer=discriminator_y_optimizer)
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)
 if a checkpoint exists, restore the latest checkpoint.
if ckpt_manager.latest_checkpoint:
 ckpt.restore(ckpt_manager.latest_checkpoint)
 print (Latest checkpoint restored!!)

6、训练

注意:为了使本讲义的训练时间合理,本示例数学模型迭代次数较少(40次,论文中为200次),预测效用可能不如论文准确。

EPOCHS = 40
def generate_images(model, test_input):
 prediction = model(test_input)
 plt.figure(figsize=(12, 12))
 display_list = [test_input[0], prediction[0]]
 title = [Input Image, Predicted Image]
 for i in range(2):
 plt.subplot(1, 2, i+1)
 plt.title(title[i])
  getting the pixel values between [0, 1] to plot it.
 plt.imshow(display_list[i] * 0.5 + 0.5)
 plt.axis(off)
 plt.show()

尽管训练起来很复杂,但基本的步骤只有四个,分别为:获取预测、计算损失、使用反向传播计算梯度、将梯度应用于优化程序。

@tf.function
def train_step(real_x, real_y):
  persistent is set to True because gen_tape and disc_tape is used more than
  once to calculate the gradients.
 with tf.GradientTape(persistent=True) as gen_tape, tf.GradientTape(
 persistent=True) as disc_tape:
 fake_y = generator_g(real_x, training=True)
 cycled_x = generator_f(fake_y, training=True)
 fake_x = generator_f(real_y, training=True)
 cycled_y = generator_g(fake_x, training=True)
 disc_real_x = discriminator_x(real_x, training=True)
 disc_real_y = discriminator_y(real_y, training=True)
 disc_fake_x = discriminator_x(fake_x, training=True)
 disc_fake_y = discriminator_y(fake_y, training=True)
  calculate the loss
 gen_g_loss = generator_loss(disc_fake_y)
 gen_f_loss = generator_loss(disc_fake_x)
  Total generator loss = adversarial loss + cycle loss
 total_gen_g_loss = gen_g_loss + calc_cycle_loss(real_x, cycled_x)
 total_gen_f_loss = gen_f_loss + calc_cycle_loss(real_y, cycled_y)
 disc_x_loss = discriminator_loss(disc_real_x, disc_fake_x)
 disc_y_loss = discriminator_loss(disc_real_y, disc_fake_y)
  Calculate the gradients for generator and discriminator
 generator_g_gradients = gen_tape.gradient(total_gen_g_loss, 
 generator_g.trainable_variables)
 generator_f_gradients = gen_tape.gradient(total_gen_f_loss, 
 generator_f.trainable_variables)
 discriminator_x_gradients = disc_tape.gradient(
 disc_x_loss, discriminator_x.trainable_variables)
 discriminator_y_gradients = disc_tape.gradient(
 disc_y_loss, discriminator_y.trainable_variables)
  Apply the gradients to the optimizer
 generator_g_optimizer.apply_gradients(zip(generator_g_gradients, 
 generator_g.trainable_variables))
 generator_f_optimizer.apply_gradients(zip(generator_f_gradients, 
 generator_f.trainable_variables))
 discriminator_x_optimizer.apply_gradients(
 zip(discriminator_x_gradients,
 discriminator_x.trainable_variables))
 discriminator_y_optimizer.apply_gradients(
 zip(discriminator_y_gradients,
 discriminator_y.trainable_variables))
for epoch in range(EPOCHS):
 start = time.time()
 n = 0
 for image_x, image_y in tf.data.Dataset.zip((train_horses, train_zebras)):
 train_step(image_x, image_y)
 if n % 10 == 0:
 print (., end=)
 n+=1
 clear_output(wait=True)
  Using a consistent image (sample_horse) so that the progress of the model
  is clearly visible.
 generate_images(generator_g, sample_horse)
 if (epoch + 1) % 5 == 0:
 ckpt_save_path = ckpt_manager.save()
 print (Saving checkpoint for epoch {} at {}.format(epoch+1,
 ckpt_save_path))
 print (Time taken for epoch {} is {} sec\n.format(epoch + 1,
 time.time()-start))

7、使用测试集生成影像

Run the trained model on the test dataset
for inp in test_horses.take(5):
 generate_images(generator_g, inp)

8、进阶学习方向

在上面的讲义中,我们学习了如何从Pix2Pix中同时实现的生成器和鉴别器进一步同时实现CycleGAN,接下来的学习你能尝试使用TensorFlow中的其他统计数据集。

你还能用更多次的迭代改善结果,或者同时实现论文中修改的ResNet生成器,进行知识点的进一步巩固。

传送门

https://www.tensorflow.org/beta/tutorials/generative/cyclegan

GitHub地址:

https://github.com/tensorflow/docs/blob/master/site/en/r2/tutorials/generative/cyclegan.ipynb

— 完 —

诚挚招聘

物理位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在物理位社会公众号(QbitAI)对话界面,回复招聘两个字。

物理位 QbitAI · 头条号签约作者

վᴗ ի 追踪AI控制技术和产品新动态